Potential Use of Porous Titanium–Niobium Alloy in Orthopedic Implants: Preparation and Experimental Study of Its Biocompatibility In Vitro

نویسندگان

  • Jian Xu
  • Xiao-Jun Weng
  • Xu Wang
  • Jia-Zhang Huang
  • Chao Zhang
  • Hassan Muhammad
  • Xin Ma
  • Qian-De Liao
چکیده

BACKGROUND The improvement of bone ingrowth into prosthesis and enhancement of the combination of the range between the bone and prosthesis are important for long-term stability of artificial joints. They are the focus of research on uncemented artificial joints. Porous materials can be of potential use to solve these problems. OBJECTIVES/PURPOSES This research aims to observe the characteristics of the new porous Ti-25Nb alloy and its biocompatibility in vitro, and to provide basic experimental evidence for the development of new porous prostheses or bone implants for bone tissue regeneration. METHODS The Ti-25Nb alloys with different porosities were fabricated using powder metallurgy. The alloys were then evaluated based on several characteristics, such as mechanical properties, purity, pore size, and porosity. To evaluate biocompatibility, the specimens were subjected to methylthiazol tetrazolium (MTT) colorimetric assay, cell adhesion and proliferation assay using acridine staining, scanning electron microscopy, and detection of inflammation factor interleukin-6 (IL-6). RESULTS The porous Ti-25Nb alloy with interconnected pores had a pore size of 200 µm to 500 µm, which was favorable for bone ingrowth. The compressive strength of the alloy was similar to that of cortical bone, while with the elastic modulus closer to cancellous bone. MTT assay showed that the alloy had no adverse reaction to rabbit bone marrow mesenchymal stem cells, with a toxicity level of 0 to 1. Cell adhesion and proliferation experiments showed excellent cell growth on the surface and inside the pores of the alloy. According to the IL-6 levels, the alloy did not cause any obvious inflammatory response. CONCLUSION All porous Ti-25Nb alloys showed good biocompatibility regardless of the percentage of porosity. The basic requirement of clinical orthopedic implants was satisfied, which made the alloy a good prospect for biomedical application. The alloy with 70% porosity had the optimum mechanical properties, as well as suitable pore size and porosity, which allowed more bone ingrowth.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Novel Titanium Manganese Alloys and Their Macroporous Foams for Biomedical Applications Prepared by Field Assisted Sintering

In this chapter, a novel titanium (Ti) alloy and foam suitable for biomedical applications will be introduced. As we know, Ti and its alloys are widely used as biomaterials especially for orthopedic implants in load bearing sites as dental and orthopedic implants and heart valves, due to their high mechanical properties, corrosion resistance and biocompatibility (Geetha et al., 2009). Pure Ti w...

متن کامل

Novel Bio-functional Magnesium Coating on Porous Ti6Al4V Orthopaedic Implants: In vitro and In vivo Study

Titanium and its alloys with various porous structures are one of the most important metals used in orthopaedic implants due to favourable properties as replacement for hard tissues. However, surface modification is critical to improve the osteointegration of titanium and its alloys. In this study, a bioactive magnesium coating was successfully fabricated on porous Ti6Al4V by means of arc ion p...

متن کامل

Ti6Ta4Sn alloy and subsequent scaffolding for bone tissue engineering.

Porous titanium (Ti) and titanium alloys are promising scaffold biomaterials for bone tissue engineering, because they have the potential to provide new bone tissue ingrowth abilities and low elastic modulus to match that of natural bone. In the present study, a new highly porous Ti6Ta4Sn alloy scaffold with the addition of biocompatible alloying elements (tantalum (Ta) and tin (Sn)) was prepar...

متن کامل

Microstructure, in Vitro Corrosion and Mechanical Properties of porous Magnesium-Zinc Nanocomposite Scaffolds

Due to good biocompatibility, corrosion and mechanical properties, magnesium (Mg) is considered promising degradable material for orthopedic applications. In this work, Mg-MgZnx (x= 1, 2, 3 and 4) nanocomposites scaffolds with different porosities were synthesized via powder metallurgy method. The microstructure, composition, in vitro corrosion and mechanical properties of porous magnesium-zinc...

متن کامل

Pore Geometry Optimization of Titanium (Ti6Al4V) Alloy, for Its Application in the Fabrication of Customized Hip Implants

The present study investigates the mechanical response of representative volume elements of porous Ti-6Al-4V alloy, to arrive at a desired range of pore geometries that would optimize the reduction in stiffness necessary for biocompatibility with the stress concentration arising around the pore periphery, under physiological loading conditions with respect to orthopedic hip implants. A comparat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013